Wei.ghts and Unique 3-Edge-Colorings of Cubic Graphs

نویسنده

  • Cun-Quan Zhang
چکیده

Cun-Quan Zhang DEPARTMENT OF MATHEMA TICS WEST VIRGINIA UNIVERSITY MORGANTOWN, WEST VIRGINIA A (1,2)-eulerian weight w of a graph is hamiltonian if every faithful cover of w is a set of two Hamilton circuits. Let G be a 3-connected cubic graph containing no subdivision of the Petersen graph. We prove that if G admits a hamiltonian weight then G is uniquely 3-edge-colorable. © 1995 John Wiley & Sons, Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Number of 3-Edge Colorings of Cubic Graphs

In this paper we present a short algebraic proof for a generalization of a formula of R. Penrose, Some applications of negative dimensional tensors, in: Combinatorial Mathematics and its Applications Welsh (ed.), Academic Press, 1971, pp. 221–244 on the number of 3-edge colorings of a plane cubic graph. We also show that the number of 3-edge colorings of cubic graphs can be computed (up to a fa...

متن کامل

On S-packing edge-colorings of cubic graphs

Given a non-decreasing sequence S = (s1, s2, . . . , sk) of positive integers, an Spacking edge-coloring of a graph G is a partition of the edge set of G into k subsets {X1,X2, . . . ,Xk} such that for each 1 ≤ i ≤ k, the distance between two distinct edges e, e′ ∈ Xi is at least si + 1. This paper studies S-packing edgecolorings of cubic graphs. Among other results, we prove that cubic graphs ...

متن کامل

On Interval Edge Colorings of Biregular Bipartite Graphs With Small Vertex Degrees

A proper edge coloring of a graph with colors 1, 2, 3, . . . is called an interval coloring if the colors on the edges incident to each vertex form an interval of integers. A bipartite graph is (a, b)-biregular if every vertex in one part has degree a and every vertex in the other part has degree b. It has been conjectured that all such graphs have interval colorings. We prove that all (3, 6)-b...

متن کامل

Counting edge-Kempe-equivalence classes for 3-edge-colored cubic graphs

Two edge colorings of a graph are edge-Kempe equivalent if one can be obtained from the other by a series of edge-Kempe switches. This work gives some results for the number of edge-Kempe equivalence classes for cubic graphs. In particular we show every 2-connected planar bipartite cubic graph has exactly one edge-Kempe equivalence class. Additionally, we exhibit infinite families of nonplanar ...

متن کامل

ON THE EDGE COVER POLYNOMIAL OF CERTAIN GRAPHS

Let $G$ be a simple graph of order $n$ and size $m$.The edge covering of $G$ is a set of edges such that every vertex of $G$ is incident to at least one edge of the set. The edge cover polynomial of $G$ is the polynomial$E(G,x)=sum_{i=rho(G)}^{m} e(G,i) x^{i}$,where $e(G,i)$ is the number of edge coverings of $G$ of size $i$, and$rho(G)$ is the edge covering number of $G$. In this paper we stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007